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Rotation–vibrational spectra of diatomic molecules and
nuclei with Davidson interactions

D J Rowe and C Bahri
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Received 5 February 1998

Abstract. Complete rotation–vibrational spectra and electromagnetic transition rates are
obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions.
Analytical results are derived by dynamical symmetry methods for diatomic molecules and a
liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus
with quadrupole Davidson interactions within the framework of the microscopic symplectic
model.

1. Introduction

Many interaction potentials have been considered for the relative dynamics of two-body
systems (cf the comparative study by Varshni [1]). The most useful potentials are ones
for which the radial Schr̈odinger equation is solvable by factorization [2] and/or algebraic
methods [3]. These include the harmonic oscillator, Coulomb, Morse and Pöschl–Teller
potentials (for a review of one-body problems solvable by algebraic and factorization
methods, for example, the articles by Cooper [4] and Duttet al [5]). However, with the
exception of the harmonic oscillator and Coulomb potentials, algebraic solutions for three-
dimensional systems are generally available only for angular momentum zero states. Thus
there is a need for algebraically solvable potentials that apply to all angular momentum states
and which, as a consequence, are useful for studying rotational systems and the manner in
which they are perturbed by rotation–vibration interactions.

The rotational states of a truly rigid rotor can be handled easily [6]. However, the
expansion on a vibrational basis of a rigid rotor wavefunction (which involves delta functions
in the relative coordinates) does not converge to a square integrable wavefunction. By the
same token, the eigenfunctions of a soft vibrational rotor are very slowly convergent in a
spherical vibrational basis. This emphasizes the need for a model which gives a good first
approximation for the states of a rotation–vibrational system and provides a meaningful
basis for more realistic approximations.

In section 3, we consider algebraic solutions of a diatomic molecule with a potential

V (r) = χ
(
r2+ ε

r2

)
. (1)

This potential was introduced by Davidson [7]. As a molecular interaction, it is unrealistic
at larger values and has no unbound states. However, it has the distinct advantage that its
Schr̈odinger equation has a complete set of algebraic solutions. Moreover, it can be handled
algebraically in any number of dimensions.
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In section 4, we consider a many-body system with Davidson interactions and show
that it has ansu(1, 1)× so(3) spectrum generating algebra. This enables one to derive the
relative energies of states within a commonsu(1, 1)× so(3) irrep. However, we have not
been able to derive the energy differences of states belonging to different many-particle
irreps.

The model we consider has much in common with the Calogero model [8] which
can be regarded as a model for many particles in a one-dimensional space with Davidson
interactions. Our hope was that the special characteristics of the Calogero model, which
render it accessible to algebraic solution, might be extendable to three dimensions. This
does not appear to be the case. However, the rotations and vibrations of a many-particle
nucleus, do have algebraic solutions within the framework of the Bohr–Mottelson collective
model [9].

The Bohr–Mottelson model is a liquid-drop model with five collective quadrupole
coordinates{qν; ν = 0,±1,±2} and five canonical momentum coordinates{πν =
−ih̄∂/∂qν}. With the Hamiltonian

H0 = 1

2B
π · π + 1

2
Bω2q · q (2)

it gives a harmonic vibrational spectrum. But, with a quadrupole Davidson potential, the
Hamiltonian

Hε = 1

2B
π · π + 1

2
Bω2

(
q · q + ε

q · q
)

(3)

yields a rotation–vibrational spectrum characteristic of the so-called gamma-soft, Wilets–
Jean [10] limit of the collective model. This was shown by Elliottet al [11], who derived
energy levels and collective model wavefunctions for such a potential by analytic methods.
Algebraic solutions for this Hamiltonian are derived in section 5 using ansu(1, 1)× so(3)
spectrum generating algebra (cf [12]).

With quadrupole moments{Qν} for the nucleus expressed in the form

Qν =
√

16π

5

A∑
n=1

r2
nY2ν(θn, ϕn) (4)

where(rn, θn, ϕn) are spherical polar coordinates of a nucleon, the Davidson potential

V (Q) = χ
(
Q ·Q+ ε

Q ·Q
)

(5)

becomes a microscopic potential. Furthermore, since the{Qν} moments, as well as the
many-nucleon kinetic energy

∑
n p

2
n/2m and the harmonic oscillator potential1

2mω
2∑

n r
2
n ,

are elements of ansp(3,R) Lie algebra, it follows that a complete set of many-nucleon
eigenstates can be found for the unified model Hamiltonian

H = 1

2m

∑
n

p2
n +

1

2
mω2

∑
n

r2
n + V (Q) (6)

with each state lying within an irrep of thesp(3,R) Lie algebra [13]. This makes it
possible to carry out microscopic calculations of nuclear states for the Davidson potential
within the framework of the symplectic model [13–15]. The symplectic model is discussed
and preliminary results for the Davidson potential are given in section 7.
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2. The spherical harmonic oscillator

The energy-level spectrum and eigenfunctions of the spherical harmonic oscillator can be
constructed in many ways. A construction that survives the addition of a Davidson potential
to the Hamiltonian is one that uses an Sp(3,R) ⊃ Sp(1,R) × SO(3) dynamical subgroup
chain. Thus, before proceeding, we outline the use of this subgroup for the spherical
harmonic oscillator.

Infinitesimal generators of Sp(1,R) are given by

Ẑ1 = p2 =
∑
i

p2
i Ẑ2 = r2 =

∑
i

x2
i

Ẑ3 = 1
2(r · p+ p · r) = 1

2

∑
i

(xipi + pixi)
(7)

where{x̂j , p̂j } satisfy the Heisenberg commutation relations

[x̂j , p̂k] = ih̄δjkÎ . (8)

These operators span ansp(1,R) ∼ su(1, 1) Lie algebra with commutation relations

[Ẑ1, Ẑ2] = −4ih̄Ẑ3 [Ẑ3, Ẑ1] = 2ih̄Ẑ1

[Ẑ3, Ẑ2] = −2ih̄Ẑ2.
(9)

The components of the angular momentum

h̄L = r × p (10)

likewise span theso(3) Lie algebra.
Thesp(1,R) commutation relations can be brought to standardsu(1, 1) form by defining

X̂1 = 1

4h̄

(
aẐ1− 1

a
Ẑ2

)
X̂2 = 1

2h̄
Ẑ3 X̂3 = 1

4h̄

(
aẐ1+ 1

a
Ẑ2

)
.

(11)

We then obtain the familiar expressions

[X̂1, X̂2] = −ih̄X̂3 [X̂2, X̂3] = ih̄X̂1

[X̂3, X̂1] = ih̄X̂2.
(12)

Positive discrete series irreps forsu(1, 1) are characterized by a lowest weightλ with
positive real values. Orthonormal bases for these irreps are given by states{|nλ〉; n =
0, 1, 2, . . .} which satisfy the equations

X̂+|nλ〉 =
√
(λ+ n)(n+ 1)|n+ 1, λ〉

X̂−|n+ 1, λ〉 =
√
(λ+ n)(n+ 1)|nλ〉

X̂0|nλ〉 = 1
2(λ+ 2n)|nλ〉

(13)

where

X̂± = X̂1± iX̂2 X̂0 = X̂3. (14)

The latter operators obey the commutation relations

[X̂−, X̂+] = 2X̂0 [X̂0, X̂±] = ±X̂±. (15)
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If we seta = 1/mω in equation (11) we find that

X̂0 = X̂3 = 1

2h̄ω

[
1

2m
p2+ 1

2
mω2r2

]
. (16)

The states{|nλ〉} are then eigenstates of the harmonic oscillator Hamiltonian

Ĥ = 2h̄ωX̂0 (17)

with energies

Enλ = (2n+ λ)h̄ω. (18)

Basis states{|nlm〉; n = 0, 1, 2, . . . , m = −l, . . . ,+l} for an su(1, 1)× so(3) irrep are
obtained by raising with thesu(1, 1) raising operators fromn = 0 lowest weight states
{|0lm〉}. The latter states are annihilated by thesu(1, 1) lowering operatorX̂− = X̂1− iX̂2

and have wavefunctionsψ0lm given in spherical polar coordinates by

ψ0lm(r, θ, ϕ) = Nle−r2/2αrlYlm(θ, ϕ) (19)

where α = mω/h̄ is the square of the harmonic oscillator unit of length. These
wavefunctions are eigenfunctions of the weight operator with eigenvalues given by

X̂0ψ0lm = 1
4(2l + 3)ψ0lm. (20)

Thus, for the spherical harmonic oscillator,λ = l + 3
2 and

Enl = (2n+ l + 3
2)h̄ω. (21)

3. Spectra for diatomic molecules

We now consider the Hamiltonian

H = p2

2m
+ 1

2
mω2

(
r2+ ε

r2

)
(22)

for a diatomic molecule, wherem is the reduced mass of the two atoms. The notation is
simplified if the coordinates are expressed in harmonic oscillator units of length, for which
h̄/mω = 1. The Hamiltonian then becomes

H = 1

2
h̄ω

(
−∇2+ r2+ ε

r2

)
. (23)

To find eigenstates ofH , we again use thesp(1,R) algebra. However, instead of the
basis operators defined by equation (7), we consider

Ẑ′1 = Ẑ1+ h̄
2ε

Ẑ2

= h̄2
(
−∇2+ ε

r2

)
Ẑ′2 = Ẑ2 = r2

Ẑ′3 = Ẑ3 = − 1
2ih̄(r · ∇ + ∇ · r).

(24)

The remarkable fact is that this nonlinear transformation leaves thesp(1,R) commutation
relations (9) invariant. Thus, the spectrum is given, as for the spherical harmonic oscillator,
by an expression of the form

Enl = [2n+ λ(l)]h̄ω. (25)

However, the harmonic oscillator relationshipλ(l) = l + 3
2 no longer applies.

The new relationship betweenλ and l can be inferred from the value of thesu(1, 1)
Casimir invariant

Ĉ2 = X̂2
3 − X̂2

1 − X̂2
2 = X̂0(X̂0− 2)− X̂+X̂− (26)
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which takesn-independent values given by

Ĉ2|nλ〉 = 1
4λ(λ− 2)|nλ〉. (27)

Thus, for the spherical harmonic oscillator, for whichε = 0, the operator takes values

C2(ε = 0) = (l + 3
2)(l − 1

2). (28)

When ε 6= 0, the carrier spaces of thesu(1, 1) irreps remain the same. However, the
Casimir operator changes because the realization of thesu(1, 1) algebra changes. In terms
of the sp(1,R) operators, we have

Ĉ2(ε) = 1

4h̄2

[
1

2
(Ẑ′1Ẑ

′
2+ Ẑ′2Ẑ′1)− Ẑ′23

]
= Ĉ2(ε = 0)+ 1

4
ε (29)

where

Ĉ2(ε = 0) = 1

4h̄2

[
1

2
(Ẑ1Ẑ2+ Ẑ2Ẑ1)− Ẑ2

3

]
. (30)

Thus, the appropriate relationship betweenλ and l is given by

λ(l)(λ(l)− 2) = (l + 3
2)(l − 1

2)+ ε (31)

which implies that

λ(l) = 1+
√
(l + 1

2)
2+ ε. (32)

It follows that the energy level spectrum for the Hamiltonian (22) is given by

Enl =
[

2n+ 1+
√
(l + 1

2)
2+ ε

]
h̄ω. (33)

Eigenfunctions of the Hamiltonian can be generated as easily as for the spherical
harmonic oscillator. If we write the wavefunctionψnlm for the state|nlm〉 in terms of
spherical polar coordinates,

ψnlm(r, θ, ϕ) = e−r
2/2Pnlm(r, θ, ϕ) (34)

it follows, from the condition that the lowest weight states{|0lm〉} are annihilated by the
su(1, 1) lowering operatorX̂−, thatP0lm satisfies the equation[

−∇2+ ε

r2

]
P0lm(r, θ, ϕ) = 0. (35)

One easily shows that

∇2ra(x + iy)l = [a(a + 1)+ 2la]ra−2(x + iy)l. (36)

Thus, we obtain the solution to equation (35) with

P0lm(r, θ, ϕ) = Nlra+lYlm(θ, ϕ) (37)

wherea is a solution of the equation

a(a + 1)+ 2la − ε = 0. (38)

It follows that

ψ0lm(r, θ, ϕ) = Nle−r2/2rbl Ylm(θ, ϕ) (39)

whereNl is norm factor

Nl =
[

2

0(bl + 2)

]1/2

and bl =
√

[(l + 1
2)

2+ ε] − 1
2. (40)
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Note that we choose the solution for whicha > 0 so that the wavefunction is well defined
for small r and the norm factor is obtained by using the identity [16]∫ ∞

0
rpe−r

2
dr = 1

20(
1
2(p + 1)). (41)

The wavefunctions obtained are eigenfunctions ofH with eigenvalues given by
equation (33).

Wavefunctions forn 6= 0 states are obtained from then = 0 states using thesu(1, 1)
raising operators in accord with equation (13). In this way, one obtains radial wavefunctions
that are analytic continuations of spherical harmonic oscillator functions and, like them,
expressible in terms of associated Laguerre polynomials.

Apart from the reduced mass, the HamiltonianH of equation (22) contains two
adjustable parameters:ω andε. The frequencyω can be set to give the energyE10 = 2h̄ω
of the first l = 0 vibrational state at its observed value. The parameterε can be set equal
to r4

0, wherer0 is the equilibrium separation of the two atoms.
For large values ofε, one can expand the expression forEnl in inverse powers ofε to

give

Enl = E0+ 2nh̄ω + Al(l + 1)− Bl2(l + 1)2+ · · · (42)

with

A = h̄ω

2
√
ε

B = 1

4ε
A. (43)

For example, for the HCl molecule, the first vibrational state is at energy 2¯hω =
2885.9 cm−1 and the inertia parameter has valueA = 10.437 cm−1. Thus, we infer thatε
should be given the value

ε =
(
h̄ω

2A

)2

= 4778 (44)

andB ≈ 0.000 55. One sees that the Davidson potential predicts a ground-state rotational
band for the HCl molecule that is extremely close to that of a rigid rotor as observed.

Electromagnetic transition rates between molecular states are easily computed in the
model. Consider, for example, the dipole operators

D1k = ZerY1k(θ, ϕ) k = 0,±1 (45)

whereZe is the effective charge. With the wavefunctions of equation (39) and the identity
of equation (41) we obtain the reduced matrix elements

〈0l − 1‖D1‖l〉 =
√

3l

4π

Ze0( 1
2bl + 1

2bl−1+ 2)

[0(bl + 3
2)0(bl−1+ 3

2)]
1/2
. (46)

Thus, the reduced dipole transition rates

B(E1; 0l→ 0, l − 1) = |〈0l − 1‖D1‖l〉|2
(2l + 1)

(47)

take the values

B(E1; 0l→ 0, l − 1) = 3

4π
Z2e2 l

2l + 1
· 0(

1
2bl + 1

2bl−1+ 2)2

0(bl + 3
2)0(bl−1+ 3

2)
. (48)

Whenε = 0, this expression reduces to that of the spherical harmonic oscilator

B(E1; 0l→ 0, l − 1)SHO= 3Z2e2l

8π
. (49)
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Table 1. Some values of the ratioR(l; ε). At ε = 0 the results are characteristic of a spherical
(harmonic) vibrator while for largeε they approach rotor values.

l\ε 0 5 10 20 ∞
2 2.0 1.37 1.31 1.26 1.20
3 3.0 1.74 1.58 1.46 1.29
4 4.0 2.14 1.86 1.66 1.33
5 5.0 2.56 2.17 1.87 1.36

Whenε→∞, we can use the identity [16]

lim
n→∞ n

b−a 0(n+ a)
0(n+ b) = 1 (50)

to obtain the rotor model expression

B(E1; 0l→ 0, l − 1)ROT = 3

4π
Z2e2√ε l

2l + 1
(51)

for two atoms with separation distancer0 = ε1/4. From the values of the ratios

R(l; ε) = B(E1; 0l→ 0, l − 1)ε
B(E1; 01→ 00)ε

(52)

shown in table 1, one sees thatB(E1; 0l→ 0, l−1)ε indeed changes rapidly with increasing
ε from harmonic oscillator values to those of a rotor.

The HCl molecule, withε = 4778 is evidently extremely close to the rigid rotor limit.

4. Many-particle systems with Davidson interactions

The Hamiltonian forA particles in three dimensions with Davidson interactions is given by

H = 1

2
h̄ω

A∑
n=1

[
(−∇2

n + r2
n)+

∑
m6=n

ε

|rm − rn|2
]
. (53)

This Hamiltonian has ansp(1,R) ∼ su(1, 1) SGA with

Ẑ′1 = h̄2
∑
n

[
−∇2

n +
∑
m6=0

ε

|rm − rn|2
]

Ẑ′2 =
∑
n

r2
n

Ẑ′3 = − 1
2ih̄

∑
n

(rn · ∇n +∇n · rn).
(54)

It is SO(3) andSA invariant, whereSA is the symmetric group of permutations of the
A-particle indices. Thus,H has energy levels given by

EnαL = [2n+ λ(αL)]h̄ω. (55)

This equation shows that the relative energies of states within ansu(1, 1) irrep follow a
harmonic oscillator sequence. We have not been able to determine the lowest weights
{λ(αL)} for the manysu(1, 1) irreps that occur. Consequently, we do not know the
relative energies of states belonging to differentsu(1, 1) irreps. Thus, it appears that the
Hamiltonian (53) is only partially integrable.

To determine the lowest weights{λ(αL)}, and hence the low-energy spectrum for
the Hamiltonian of equation (53), it would appear that we need to proceed numerically.
However, to do so requires the construction of a suitable basis in terms of which expansions
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of the desired eigenstates would be rapidly convergent. The search for such a basis presents
a challenge we have not resolved.

It is of interest to note that in one dimension the Hamiltonian for a many-particle system
with Davidson interactions

H = 1

2
h̄ω

∑
n

[(
− d2

dx2
n

+ x2
n

)
+
∑
m6=n

ε

|xm − xn|2
]

(56)

is the Hamiltonian of the Calogero model [8]. This Hamiltonian is known to have a subset
of analytical solutions [8, 17]. Thus, it is appropriate to consider their structure to see if
they can extend to three dimensions.

If r2 = ∑A
n=1 x

2
n, then the eigenfunctions of the Hamiltonian (56), with the correct

boundary conditions, are of the form

ψ(x) = P(x)e−r2/2α α = mω

h̄
(57)

whereP is a polynomial in the variablesx = (x1, . . . , xA). Using the identity

∂

∂xn
e−r

2/2α = e−r
2/2α

(
∂

∂xn
− xn
α

)
(58)

one finds thatP satisfies the eigenfunction equation∑
n

[(
− ∂2

∂x2
n

+ xn ∂

∂xn
+ ∂

∂xn
xn

)
+
∑
m6=n

ε

|xn − xm|2
]
P(x) = 2E

h̄ω
P (x). (59)

Calogero showed that ifz is the Vandermonde determinant

z =
∏
n<m

(xn − xm) (60)

then ∑
n

∂z

∂xn
=
∑
n

∂2z

∂x2
n

= 0 (61)

and ∑
n

(
∂z

∂xn

)2

= z2
∑
n

∑
m6=n

1

(xn − xm)2 . (62)

It follows that a solution to equation (59) is obtained with

P(x) = za (63)

where

a = 1
2 + 1

2

√
1+ 4ε for ε 6= 0 (64)

and

E = 1
4A(A− 1)

[
1+√1+ 4ε

]
h̄ω. (65)

Unfortunately, it does not appear that the eigenfunctions of the Calogero Hamiltonian
obtained in this way extend to the corresponding three-dimensional problem. If they did,
they would not be the wavefunctions normally chosen for a many-fermion system because,
althoughψ(x), defined by equations (57) and (63), obeys an exclusion principle, it is not
antisymmetric (neither is it symmetric).
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5. The nuclear collective model

If the {qν} coordinates of the nuclear collective model (CM) are expressed in the standard
way [9]

qν = β cosγD2
0ν(�)+

1√
2
β sinγ (D2

2ν(�)+D2
−2ν(�)) (66)

in terms of intrinsic(β, γ ) coordinates and rotational� ∈ SO(3) angles, the quadrupole
Davidson potential acquires the simple form

V (β) = 1

2
Bω2

(
q · q + ε

q · q
)
= 1

2
Bω2

(
β2+ ε

β2

)
. (67)

As for the diatomic molecule, we can simplify the notation further by putting the coordinates
in harmonic oscillator units. In these units ¯h/Bω→ 1 and the Hamiltonian (3) becomes

Hε = 1

2
h̄ω

(
−∇2+ β2+ ε

β2

)
(68)

where∇2 is the Laplacian operator in the five-dimensional space of the model.
Both ∇2 and β2 = q · q are scalar products of five-component vectors. Thus, the

HamiltonianHε is SO(5) invariant. Such Hamiltonians for the CM have been considered
by Wilets and Jean [10]. They are characterized by the fact that their potentials are functions
only of β; they are independent ofγ and� (the latter due to SO(3) invariance) and are
often described as beingγ -soft. The additional feature of the collective Hamiltonian with
a Davidson potential is that, as well as having an SO(5) symmetry group, it also has an
SU(1, 1) dynamical group.

It is known (cf [18]) that an orthonormal basis for the CM is given by a set of states
{|nvαLM〉} labelled by quantum numbers of the subgroup chain

SU(1, 1)× SO(5) ⊃ U(1)× SO(3) ⊃ SO(2)
λ v α n L M

(69)

whereλ is an SU(1, 1) lowest weight,v (the so-called SO(5) seniority) is the highest weight
for an SO(5) irrep andα indexes the SO(3) multiplicity.

The energy level spectrum for theε = 0 HamiltonianH0 is the harmonic vibrational
spectrum for which

λ(ε = 0) = v + 5
2 (70)

and

Env(ε = 0) = (2n+ v + 5
2)h̄ω (71)

with v = 0, 1, 2, . . . andn = 0, 1, 2, . . . . Each(nv) pair indexes a multiplet of states which
span a corresponding SO(5) irrep of highest weightv. Such an irrep comprises a range of
SO(3) states given [19] by

L = 2K, 2K − 2, 2K − 3, . . . , K

K = v, v − 3, v − 6, . . . , ν

ν = 0, 1, or 2.

(72)

To obtain the energy levels ofHε we define

Ẑ1 = −h̄2∇2 Ẑ2 = β2

Ẑ3 = − 1
2ih̄(q · ∇ + ∇ · q).

(73)
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and, forε 6= 0, make the nonlinear transformation

Ẑ′1 = Ẑ1+ h̄
2ε

Ẑ2

Ẑ′2 = Ẑ2 Ẑ′3 = Ẑ3. (74)

Both the{Ẑi} and{Ẑ′i} operators then satisfy thesp(1,R) ∼ su(1, 1) commutation relations
of equation (9). Thus, we transform to{X̂i} operators by means of equation (11) and, setting
a = 1/Bω, obtain

Hε = 2h̄ωX̂0. (75)

It follows that the energy-level spectrum ofHε is given by

Env = [2n+ λ(v)]h̄ω. (76)

To determineλ(v) when ε 6= 0, we again consider the expression for thesu(1, 1)
Casimir operator

C2 = C2(ε = 0)+ 1
4ε. (77)

It follows now from equation (70) that

λ(v)(λ(v)− 2) = (v + 5
2)(v + 1

2)+ ε (78)

and

λ(v) = 1+
√
(v + 3

2)
2+ ε. (79)

Thus, we obtain the energy-level spectrum

Env(ε) =
[

2n+ 1+
√
(v + 3

2)
2+ ε

]
h̄ω. (80)

For ε = 0, we regain the harmonic vibrational limit of equation (71). For large values
of ε, we obtain

Env(ε) = E0+ 2nh̄ω + h̄ω

2
√
ε
v(v + 3)+ · · · (81)

which, for ε → ∞ and h̄ω → ∞, gives the characteristic spectrum of theβ-rigid, γ -soft
limit of the CM;

Ev = E0+ Av(v + 3). (82)

However, we also obtain a complete range of solutions for finite values ofε. Some examples
are shown in figure 1.

Wavefunctions for thesu(1, 1) lowest weight states{|0vαLM〉} can be expressed

9v
αLM(q) = e−β

2/2P vαLM(q). (83)

Since

X̂−e−β
2/2 = 1

4
e−β

2/2

[
−∇2+ ε

β2

]
X̂0e−β

2/2 = 1

4
e−β

2/2

[
−∇2+ ε

β2
+ q · ∇ + ∇ · q

] (84)

andX̂−9v
αLM = 0, it follows that

X̂09
v
αLM(q) = 1

4e−β
2/2[2q · ∇ + 5]P vαLM(q). (85)
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Figure 1. Energy-level spectra for the collective model for selected values ofε.

We also know from the energy spectrum that

X̂09
v
αLM(q) = 1

2λ(v)9
v
αLM(q). (86)

It follows thatP vαLM is a polynomial of degree

bv = λ(v)− 5
2 =

√
(v + 3

2)
2+ ε − 3

2. (87)

Whenε = 0, the polynomials are solutions of Laplace’s equation;∇2P vαLM = 0. Thus, they
are harmonic polynomials;

P vαLM(q)
ε=0−→βvYvαLM(ζ ) (88)

whereYvαLM is an SO(5) spherical harmonic andζ is a suitable set of spherical coordinates
for the unit SO(5) sphere. For arbitraryε the wavefunctions are then

9v
αLM(q) = Nve−β

2/2βbvYvαLM(ζ ) (89)

whereNv is a norm factor.
Wavefunctions forn 6= 0 states are obtained from then = 0 states using thesu(1, 1)

raising operators in accord with equation (13). In this way, one obtains wavefunctions that
are analytic continuations of spherical vibrator functions and, like them, expressible in terms
of associated Laguerre polynomials inβ [11].

We now consider predictions of the model for electromagnetic quadrupole transitions.
Assuming the quadrupole transition operators to be of the form

Qν = kβY2ν (90)

wherek is a constant, and the volume element of the collective model to be of the form
β4 dβ dv(ζ ), where dv(ζ ) is the SO(5) invariant measure, the required matrix elements for
the ground-state band ofn = 0 states are given by the expression

〈0v′α′L′‖Q‖0vαL〉 = Nv′Nv
∫ ∞

0
e−β

2
βbv+bv′+5 dβ k〈Yv′α′L′ ‖Y2‖YvαL〉. (91)
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Thus, we obtain

〈0v − 1, α′L′‖Q‖0vαL〉 = k〈Yv−1
α′L′ ‖Y2‖YvαL〉

0( 1
2(bv + bv−1)+ 3)√

0(bv + 5
2)0(bv−1+ 5

2)

. (92)

The〈Yv′α′L′ ‖Y2‖YvαL〉 reduced matrix elements depend only on the properties of the SO(5)
irreps involved. They can be evaluated by the methods given in [18].

The general expression for a quadrupole matrix element can also be obtained in terms
of the corresponding expressions for the spherical vibrational limit of the CM, for which
ε = 0. In theε = 0 limit, the non-zero matrix elements are given by

〈0v − 1, α′L′‖Q‖0vαL〉0k〈Yv−1
α′L′ ‖Y2‖YvαL〉

√
v + 3

2. (93)

Thus, we obtain

〈0v − 1, α′L′‖Q‖0vαL〉ε
〈0v − 1, α′L′‖Q‖0vαL〉0 =

0( 1
2(bv + bv−1)+ 3)√

(v + 3
2)0(bv + 5

2)0(bv−1+ 5
2)

. (94)

The beta-rigid limit is obtained by taking the limitε→∞ in which

bv →
√
ε − 3

2

0(
√
ε + 3

2)

0(
√
ε + 1)

→ ε
1
4 = β0 (95)

whereβ0 is the value ofβ for which the Davidson potential is a minimum. We obtain

〈0v − 1, α′L′‖Q‖0vαL〉∞
〈0v − 1, α′L′‖Q‖0vαL〉0 =

β0√
v + 3

2

. (96)

6. Generalizations of the model

A limitation of the Davidson potential for applications in nuclear physics is that it is
completely gamma-soft; it depends only onβ. As a consequence the spectrum of the
model given by equation (80) depends only the SO(5) seniority quantum numberv, i.e. the
angular momentum states within a given SO(5) irrep have the same energy.

An interesting potential to consider would be one which depends on bothβ andγ , e.g.

V (β, γ ) = 1

2
Bω2

(
q · q + ε

q · q
)
+ χ(q × q × q)0 (97)

where it is noted (from equation (66)) that

(q × q × q)0 ∼ β3 cos 3γ. (98)

Such a potential would describe the coupled rotations and vibrations of a model nucleus
with β- and γ -stiff but not rigid for finite values ofε and χ . Unfortunately, such a
Hamiltonian is not diagonalized by states which reduce any known subalgebra chain. Thus,
to determine the spectrum of the Hamiltonian of equation (97), it would be necessary to
proceed numerically. However, one could expect to obtain much more rapidly convergent
results in anε 6= 0, SO(5) basis than in the spherical harmonic(ε = 0) basis customarily
used [20] for CM calculations.

A quick and easy way to lift the degeneracy of states of an SO(5) multiplet would be to
simply add a term to the Hamiltonian proportional to the SO(3) Casimir invariantAL ·L.
Note that theso(5) Lie algebra is spanned by three components of the angular momentum
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and seven components of a (positive parity) octupole tensorO. Furthermore, the second
order Casimir operator for SO(5) is given (to within a constant numerical factor) by

Ĉso(5)
2 = O ·O + 1

10L ·L. (99)

Thus, to split the degeneracy of the SO(5) multiplets, one could, equivalently, add anO ·O
interaction to the Hamiltonian, in parallel with theQ · Q interaction used in the SU(3)
model [21]. By either device, one simply adjusts the energies of states without changing
their wavefunctions or matrix elements.

7. The symplectic model

The model Hamiltonians in three and five dimensions considered in the preceeding sections
are solvable by virtue of their Sp(1,R) dynamical symmetries and their invariance under
SO(3) and SO(5), respectively. However, for a many-particle system in three dimensions,
we need additional symmetry. First observe that the quadrupole moments defined by
equation (4) are linear combinations of the Cartesian scalar products ofA-component vectors

Qij =
A∑
n=1

xnixnj (100)

where (xn1, xn2, xn3) are Cartesian coordinates for thenth particle. Thus, the quadrupole
moments are scalars under orthogonal O(A) transformations in particle-index space. It
follows that the scalar productQ ·Q and the potentialV (Q) of equation (5) are invariant
under both SO(3) and O(A). We therefore consider the many-particle Hamiltonian

H = 1

2
h̄ω

∑
n

(−∇2
n + r2

n)+ χ
(
Q ·Q+ ε

Q ·Q
)
. (101)

In replacing
∑

n r
2
n by Q · Q in the Davidson potential, the Sp(1,R) dynamical

symmetry is lost. However, the larger dynamical symmetry Sp(3,R) remains. The essential
observation is that the Hamiltonian (101) is a function of the elements

Kij =
∑
n

pnipnj Qij =
∑
n

xnixnj

Pij = 1
2

∑
n

(xnipnj + pnjxni)
(102)

of an sp(3,R) Lie algebra. Thus, the Hamiltonian (101) leaves the carrier space for an
sp(3,R) irrep invariant.

It may be noted that the group Sp(3,R) contains SO(3) as a subgroup and its elements
all commute with those of O(A). Thus, Sp(3,R) takes full advantage of the SO(3)×O(A)
invariance of the Hamiltonian.

Unfortunately, we no longer have a chain of dynamical subgroups which would enable us
to deduce the spectrum and eigenfunctions of the Hamiltonian by purely algebraic methods.
However, the Sp(3,R) dynamical symmetry makes it possible to determine the spectrum
and eigenfunctions of the Hamiltonian on a computer.

The calculations can be carried out in a basis for an Sp(3,R) irrep that reduces the
SU(3) ⊂ Sp(3,R) subgroup. The many-particle harmonic oscillator part ofH is diagonal
in this basis. The added Davidson potential is not diagonal but its matrix elements are easily
computed. Efficient methods for computingsp(3,R) matrix elements and diagonalizing
Hamiltonians in thesp(3,R) enveloping algebra have been developed and are discussed
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Figure 2. Energy-level spectrum for the symplectic model compared to that for the rigid rotor
model. The angular momentumL values are given on the left of each energy level and the
reduced quadrupole transitionB(E2) are given between two levels, next to the transition arrows.

elsewhere [13–15]. These methods make maximal use of the SU(3)-coupling coefficient
technology of Draayer and Akiyama [22].

A fuller analysis of the symplectic model with a Davidson potential will be presented in
a following paper. We present here some preliminary results to show the kind of spectrum
and reduced quadrupole transition rates that can be obtained. The calculation is for a
massA = 166 nucleus. The oscillator strength is set such that ¯hω = 7.46 MeV which is
reasonable for such a nucleus. The parametersε andχ are adjusted to give an appropriate
energy difference between theL = 0 andL = 2 states. As it can be seen from figure 2,
the spectrum closely resembles that of a rigid rotor, shown for comparison, for which the
energies are proportional toL(L+ 1) and theB(E2) values are proportional to the squares
of Clebsch–Gordan coefficients [9].
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